Exercise 61

(a) Sketch the graph of the function $f(x)=x|x|$.
(b) For what values of x is f differentiable?
(c) Find a formula for f^{\prime}.

Solution

Use the definition of the derivative to find f^{\prime}.

$$
\begin{aligned}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{(x+h)|x+h|-x|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h) \sqrt{(x+h)^{2}}-x \sqrt{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h) \sqrt{(x+h)^{2}}-x \sqrt{x^{2}}}{h} \cdot \frac{(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}}{(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}(x+h)^{2}-x^{2}\left(x^{2}\right)}{h\left[(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}\right]} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h\left[(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}\right]} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}\right)-x^{4}}{h\left[(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}\right]} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}}{h\left[(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}\right]} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}}{(x+h) \sqrt{(x+h)^{2}}+x \sqrt{x^{2}}} \\
& =\frac{4 x^{3}}{(x) \sqrt{(x)^{2}}+x \sqrt{x^{2}}} \\
& =\frac{4 x^{3}}{2 x \sqrt{x^{2}}} \\
& =\frac{2 x^{2}}{\sqrt{x^{2}}} \\
& =\frac{2 x^{2}}{|x|}=\frac{2|x|^{2}}{|x|} \\
& =2 x \operatorname{sgn} x=2|x|
\end{aligned}
$$

$f(x)=x|x|$ is not differentiable at 0 because there's $|x|$ in the denominator, and for any rational function the denominator cannot be zero.

$$
\begin{gathered}
|x| \neq 0 \\
x \neq 0
\end{gathered}
$$

The domain of $f^{\prime}(x)$ is $\{x \mid x \neq 0\}$. Below is a graph of $f(x)$ versus x.

Below is a graph of $f^{\prime}(x)$ versus x.

This answer is in disagreement with the one at the back of the book.

